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Abstract
The proposed algorithm is based on the exponential decay of the screened structure constants in
the tight-binding (TB) Korringa–Kohn–Rostoker (KKR) Green function method and on a
spatial truncation of the Green function in the spirit of Kohn’s principle of nearsightedness of
electronic matter. The KKR matrix equations are solved iteratively and non-zero electronic
temperatures are used to accelerate the iterations. The dependence of the total energy accuracy
on the size of the truncation region was investigated for large Cu and Pd supercells and it was
found that total energy errors smaller than 2 meV could be achieved if the truncation region
contained a few thousand atoms.

1. Introduction

Electronic structure calculations within density-functional
theory are widely used to investigate structural, electronic
and magnetic properties of condensed matter. Systems with
a few hundred atoms can be treated routinely today, but
larger systems with thousands of atoms require enormous
computer resources, if standard techniques are used to solve
the density-functional equations, since computing memory and
time increase with second and third power of the number
N of atoms. In recent years much effort has been spent
on overcoming these O(N2) and O(N3) bottlenecks. As
a result a number of computer codes have appeared, for
example SIESTA [1], CONQUEST [2], ONETEP [3] and
OPEN-MX [4], suitable for linear-scaling O(N) calculations
for semiconducting and insulating systems. In these systems
the spatial decay of the density matrix is exponential [5], a
property which is used in the programs, with a decay constant
that increases with size of the band gap. In metallic systems
the density matrix decays algebraically at zero electronic
temperature and an exponential decay is only achieved if non-
zero temperatures are used in the calculations. However,
for reasonable temperatures, which maintain the physical
properties, the decay constant is smaller than in band-gap
systems and it is not clear whether the exponential decay is

fast enough for accurate linear-scaling calculations for metallic
systems.

The present study aims to gain insight into the questions
of how the Korringa–Kohn–Rostoker (KKR) Green function
method in its tight-binding (TB) form [6] together with
nearsightedness of electronic matter [7, 8] can be used
for linear-scaling calculations, how accurate results can be
obtained and how much non-zero electronic temperatures
can reduce the computational effort. The use of electronic
nearsightedness is not new in the KKR and the related
linear muffin-tin orbital (LMTO) methods. For many years
these methods have been using this principle successfully,
for example for description of impurity embedding in host
crystals [9–11] and treatment of large systems in the locally
self-consistent (LS) multiple-scattering and Green function
methods [12–14]. Whereas impurity calculations exploit
screening of the electronic potential by neglecting its long-
range change, the locally self-consistent multiple-scattering
(LSMS) and locally self-consistent Green function (LSGF)
methods are based on the idea that the electron density near
an atomic site is almost unaffected by the potential far away
from this site. The potential outside of a local interaction
zone around the atom, for which the density is calculated, is
then either completely neglected (as in the LSMS method) or
replaced by an effective medium potential (as in the LSGF
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method). Since each atom and its surrounding interaction zone
are treated independently, the effort in the LS methods scales
linearly with the number of atoms. A disadvantage, however,
is that the accuracy is limited by the size of the local interaction
zone [15] and that the computational effort increases with the
third power of the number of atoms in the zone.

The present work is based on the observation that the
LS methods only exploit electronic nearsightedness, whereas
methods like SIESTA, CONQUEST, ONETEP and OPEN-
MX utilize, in addition, the fact that localized basis functions
and iterative solution lead to considerable saving of computer
resources. Within the LSMS method some authors have
attempted to accelerate the calculations by iteration [16] and
by sparsity of the TB-KKR matrix [15, 17], but for interaction
zones, which are usually restricted to less than a hundred
atoms, the TB-KKR matrix is not really sparse enough and
often too many iterations are needed so that direct solutions
are cheaper than iterative ones. A different approach to
exploit sparsity and iteration is suggested by Smirnov and
Johnson [18]. They propose to solve the KKR equations for
the entire system by iteration and find computing times per
atomic site that scale as O(N1+ε ) with ε < 0.2. They argue
that for increasing system size the required number of k points
in reciprocal space scales as N−1 and conclude that total energy
calculations are possible with O(N1+ε ) scaling if the number of
k points is reduced appropriately. However, if the system is so
large that one k point is enough, or for real space calculations,
this argument breaks down and the computational effort is
proportional to N2+ε .

In this paper it will be shown that the approach of
Smirnov and Johnson can be supplemented with a scheme
that uses the decay of the density matrix and can be applied
to calculate accurate total energies for large metallic systems
with actual linear-scaling effort. To explain the idea and to
illustrate its usefulness the article is organized as follows.
Section 2 contains the basic equations of the KKR Green
function method. Section 3 describes the methodology with
explanation of how sparsity is achieved, iterative solutions are
accomplished and nearsightedness is utilized. In section 4
total energy results are presented which illustrate how accuracy
improves with the number of iterations and how it is affected
by the approximation used to obtain linear scaling. Sections 5
and 6 contain a discussion and summary.

2. Basic equations

In wavefunction-based formulations of density-functional
theory the density is usually obtained by

n(r) =
∑

i,occ

|�i(r)|2 (1)

as a sum over occupied eigenfunctions �i(r) that obey the
Kohn–Sham equation

[−∇2
r + V (r) − Ei ]�i(r) = 0 (2)

for the effective Kohn–Sham potential V (r). Compared to that,
in the KKR Green function method the density is obtained by

n(r) = − 2

π
Im

∫ EF

−∞
dEG(r, r; E) (3)

as an energy integral over the Green function that obeys the
differential equation

[−∇2
r + V (r) − E

]
G(r, r′; E) = −δ(r − r′) (4)

with the appropriate boundary condition G(r, r′; E) → 0 for
|r − r′| → ∞. Atomic units (h̄2/2m = e2/2 = 1) are used
throughout this article, the factor 2 arises from spin degeneracy,
which is assumed to simplify the following equations, and EF

denotes the Fermi level. Instead of solving (4) directly, which
is obviously more complicated than (2), it is easier to solve the
Dyson equation

G(r, r′; E) = Gr (r, r′; E) +
∫

dr′′Gr (r, r′′; E)

× [
V (r′′) − V r (r′′)

]
G(r′′, r′; E), (5)

where V r is the potential of a reference system, for which the
Green function Gr is assumed to be known. The equivalence
of (4) and (5) is easily verified, if the operator −∇2

r +
V r (r) − E is applied on both sides of (5). Compared
with (4) only the potential difference appears in (5), but not
the kinetic energy operator −∇2

r , which is already taken into
account in the reference system. Thus in a stepwise manner
the Green function of a complicated system, for example
an atom adsorbed on a surface, can be obtained starting
from the analytically known Green function of free space
by intermediate use of the ideal bulk and ideal surface as
reference systems. In each step, periodicity and locality of the
potential in one, two or three dimensions can be exploited [19].
Artificial reference systems can also be used, for instance one
with a repulsive potential, which is of particular importance
for the present work, since the Green function of a suitably
chosen repulsive reference system [6] decays exponentially for
energies E used in density-functional calculations.

For the numerical treatment it is convenient to divide the
integral in (5) into integrals over non-overlapping space-filling
cells around the atomic positions Rn and to apply multiple-
scattering theory to separate the calculation into single-
scattering and multiple-scattering events. In cell-centred
coordinates r and r′ the multiple-scattering representation of
the Green function can be written [19] as

G(r + Rn, r′ + Rn′ ; E) = δnn′
Gn

s (r, r′; E)

+
∑

L L ′
Rn

L(r; E)Gnn′
L L ′(E)Rn′

L ′(r′; E). (6)

Here L stands for the pair l and m of angular-momentum
indices and Gn

s (r, r′; E) and Rn
L (r; E) denote single-scattering

Green function and wavefunctions. They are defined by the
integral equations

Gn
s (r, r′; E) = G0(r, r′; E)

+
∫

n
dr′′ G0(r, r′′; E)V n(r′′)Gn

s (r
′′, r′; E) (7)

Rn
L(r; E) = YL(r̂) jl(r

√
E)

+
∫

n
dr′′G0(r, r′′; E)V n(r′′)Rn

L (r′′; E), (8)

where integration is over cell n and V n(r) denotes the potential
restricted to cell n.

G0(r, r′; E) = −exp(i
√

E |r − r′|)
4π |r − r′| (9)

2
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is the Green function for free space with vanishing potential
V (r) ≡ 0 and YL = Ylm denote spherical harmonics and jl
spherical Bessel functions. For r inside cell n the density (3) is
given by

n(r + Rn) = − 2

π
Im

∫ EF

−∞
dE G(r + Rn, r + Rn; E), (10)

which according to (6) depends on the single-site solutions (7)
and (8) and on the on-site (n = n′) Green function matrix
elements Gnn

L L ′(E). Here it is important to realize that solution
of (7) and (8) requires only r and r′ values in cell n because the
potential V n(r) vanishes outside cell n. This means that (7)
and (8) can be solved independently for each site n with
obviously linear-scaling effort.

The combination of the single-scattering events is
accomplished by the Green function matrix elements, which
obey the matrix equation

Gnn′
L L ′(E) = Gr,nn′

L L ′ (E)

+
∑

n′′L ′′ L ′′′
Gr,nn′′

L L ′′ (E)�tn′′
L ′′L ′′′(E)Gn′′n′

L ′′′ L ′(E), (11)

and provide all information about the multiple-scattering
problem. This system of linear equations represents an
algebraic Dyson equation with complex symmetric (but not
Hermitian) matrices of dimension (lmax + 1)2 N if angular-
momentum contributions with l � lmax are used. The Green
function matrix elements Gr,nn′

L L ′ (E) are the ones of the
reference system and �tn

L L ′(E) is a t-matrix difference, which
can be calculated by

�tn
L L ′(E) =

∫

n
dr jl(r

√
E)YL(r̂)V n(r)Rn

L ′(r; E)

−
∫

n
dr jl(r

√
E)YL(r̂)V r,n(r)Rr,n

L ′ (r; E) (12)

independently for each site n. Here Rr,n
L (r; E) denotes

single-scattering solutions of the reference system defined
in analogy to (8) with the potential V n(r) replaced by the
reference potential V r,n(r). For periodic crystals the algebraic
Dyson equation (11) is solved in reciprocal space by Fourier
transformation. This leads to

Gνν′
L L ′(k; E) = Gr,νν′

L L ′ (k; E) +
∑

ν′′ L ′′ L ′′′
Gr,νν′′

L L ′′ (k; E)

× �tν′′
L ′′L ′′′(E)Gν′′ν′

L ′′′ L ′(k; E), (13)

where k is a wavevector in the Brillouin zone and ν, ν ′ denote
basis sites in the unit cell. The back transformation to obtain
the Green function matrix elements in real space is provided
by integration over the Brillouin zone.

Note that the linear equations (11) and (13) are more
easily solved than (5). Instead of many grid points for the
spatial variables r and r′ only a few angular-momentum indices
L and L ′ are needed. Experience has shown that usually
an angular-momentum cut-off lmax = 3 is enough for total
energy calculations. For N sites the matrix dimension in (11)
and (13) is then (lmax + 1)2 N = 16N . The angular-momentum
representation is advantageous because it is well adapted to
treat nearly spherical, atomic-like potentials along with the 1/r

singularity in the vicinity of the nuclear centres and the rather
flat potential between the atoms.

For evaluation of (10) it is important that the integration
can be done on a contour in the complex energy plane [20],
avoiding the singularities of the Green function that appear on
the real axis as poles and branch cuts arising from discrete
and continuous states. A useful contour, motivated by finite-
temperature density-functional theory [21, 22], is obtained if
the density is calculated by

n(r + Rn) = − 2

π
Im

∫ ∞

−∞
dE f (E, EF, T )

× G(r + Rn, r + Rn; E), (14)

where f (E, EF, T ) = (1 + exp(β(E − EF)))
−1 is the Fermi–

Dirac function for inverse temperature β = (kT )−1. For the
present study the contour starts on the negative real energy axis
at energy E0 below the valence and above the core states. From
E0 the contour goes parallel to the imaginary axis up to E0 +
2J iπkT , where J is a chosen small integer. From there the
contour goes parallel to the real axis to infinity. On this line the
Fermi–Dirac function changes rapidly only near EF +2J iπkT
and it is a real function because of f (E + 2J iπkT, EF, T ) =
f (E, EF, T ). The integrals on the straight lines, which were
done by Gauss integration with a total number of 25 mesh
points, must be supplemented with the residues at the first J
Matsubara energies E j = EF + (2 j − 1)iπkT with j =
1, 2, . . . , J . For the temperatures T = 400, 800 and 1600 K
used below, J was chosen as 15, 7 and 4. Note that the contour
does not include the contribution of the core states, which was
calculated by treating the core states in an atomic-like fashion
and adding it to the contribution of the valence states.

3. Methodology

Because of the site-diagonality of the �t matrix it is useful
to rewrite G = Gr + Gr�tG as (1 − Gr�t)G = Gr =
−(1 − Gr�t)(�t)−1 + (�t)−1, which by multiplication with
(1 − Gr�t)−1 leads to G = −(�t)−1 + (�t)−1[(�t)−1 −
Gr ]−1(�t)−1. Thus the site-diagonal Green function matrix
elements required in (14) can be calculated in O(N) operations
from the inverse of the screened KKR matrix M = (�t)−1 −
Gr . The bottleneck in the calculation of M−1 by direct solution
is the factorization step, which decomposes the matrix M into
a product of lower and upper triangular matrices. This step
requires O(N3) floating-point operations for dense matrices.
For sparse matrices the operation count is smaller, but an
efficient implementation is difficult, in particular for parallel
computing with many processors. In iterative methods the
factorization step is avoided and replaced by matrix-vector
products which easily take advantage of sparsity. It will now
be described how sparsity was obtained, how iterations were
performed and how nearsightedness was utilized by a simple
spatial truncation of the Green function of the system.

3.1. Sparsity

The standard reference system in the KKR method is free
space. Here the Green function matrix elements G0,nn′

L L ′ (E),

3
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traditionally called structure constants, are known analytically,
but decay unfavourably slowly with distance between site
n and n′. Because of the slow decay all elements in the
KKR matrix t−1 − G0 contribute and iterative solution is too
expensive. Since O(N) on-site matrix elements Gnn

L L ′(E) are
needed for the density and for each n dense matrix-vector
products with O(N2) operations are used, the overall scaling
is O(N3) with a prefactor given by the number Nit of iterations
which is considerably larger than the prefactor for direct
solution. Thus an iterative solution is advantageous only if a
reference system can be found with rapidly decaying structure
constants Gr which can be neglected beyond a chosen distance
to obtain a sparse matrix (�t)−1 − Gr instead of the dense
matrix t−1 − G0. Such structure constants can be obtained by
the concept of screening, originally used for development of
the TB-LMTO method [23] and later applied [24] to transform
the KKR method [24] into a TB form with exponentially
decaying structure constants.

The calculation of these screened structure constants, first
determined by fitting [24, 25], is considerably simplified if
the screening transformation is understood in a physically
transparent way either in terms of a hard sphere solid [26]
or a repulsive reference system [6]. A useful reference
system with rapidly decaying structure constants in the energy
range relevant for density-functional calculations consists of
an infinite array of repulsive potentials (here chosen with
a constant height of 8 Ryd) which are confined to non-
overlapping muffin-tin spheres around the sites Rn . The TB
Green function matrix elements (screened structure constants)
of the reference system obey the Dyson equation

Gr,nn′
L L ′ (E) = G0,nn′

L L ′ (E)

+
∑

n′′L ′′ L ′′′
G0,nn′′

L L ′′ (E)tr,n′′
L ′′L ′′′(E)Gr,n′′n′

L ′′′ L ′ (E) (15)

which requires linear-scaling effort because it is solved
separately for each site n′ by use of a finite cluster of Ncl

repulsive potentials. The restriction to the potentials in the
vicinity of Rn′

is possible since more distant potentials do not
contribute if the rapidly decaying TB-KKR structure constants
Gr,nn′

L L ′ (E) are neglected for sites n not contained in the cluster.
This neglect leads to matrix dimension (lmax + 1)2 Ncl in (15),
to a sparse TB-KKR matrix with sparsity degree Ncl/N and to
O(Nit Ncl N2) scaling for the iterative solution of (11).

3.2. Iteration

The inverse X of the TB-KKR matrix M = (�t)−1 − Gr

satisfies �t M X = �t which, by inserting M , can be rewritten
as X − �tGr X = �t . This equation is used here to derive the
iteration scheme

X (i+1) = �t + �tGr X (i). (16)

Here it is important to realize that (16) does not couple
different columns of X so that each column can be iterated
independently which is suited ideally for massively parallel
computing. Unfortunately (16), which corresponds to the
Born iteration of scattering theory, often diverges and must
be replaced by a more complicated, convergence producing

scheme. One such scheme, which was used successfully
in the current investigation, is Anderson mixing [27, 28],
which prepares the input to iteration i + 1 by an optimal
linear combination of input and output vectors of all previous
iterations. A disadvantage of Anderson mixing, which is
sometimes also used to accelerate the density-functional self-
consistency cycle, is that the required memory increases with
iteration number since information of all previous iterations
is kept and used. A second scheme which produced
convergent iterations for all materials studied so far, that is
for Cu, Pd, Ni, Si and GaN, is the quasi-minimal residual
(QMR) method [29, 30] in its transpose free version. This
method, which has been applied in previous multiple-scattering
calculations [16, 18], requires one to store only a few iteration
vectors. Therefore it was preferred for the very large systems
considered below, although Anderson mixing often needed
fewer matrix-vector products. It should be pointed out that
because of the singularities of the Green function on the real
energy axis the use of complex energies is unavoidable and that
the required number Nit of iterations increases with decreasing
imaginary part of E [18].

3.3. Truncation

The spatial decay of the Green function G(r, r′; E) and the
spatial decay of the finite-temperature single-particle density
matrix

ρ(r, r′) = − 1

π
Im

∫ ∞

−∞
dE f (E, EF, T )G(r, r′; E) (17)

are connected. Evaluation of (17) by complex energy
integration as described above shows that the decay of the
density matrix is dominated by the decay of the Green function
at the first Matsubara energy E = EF + iπkT . Thus, if the
temperature is not too small, a neglect of the Green function
for large distances |r − r′| corresponds to a neglect of the
density matrix for similar distances. This similarity suggests
that a spatial truncation of the Green function may lead to N
scaling. The truncation of the Green function was implemented
by dividing the system around each considered atom into a
central region C and the rest R. In block notation (16) could
then be partitioned into
[

X (i+1)
CC

X (i+1)

RC

]
=

[
�tC

0

]

+
[

�tCGr
CC �tCGr

CR
�tRGr

RC �tRGr
RR

] [
X (i)

CC

X (i)
RC

]
(18)

and into a similar equation for XCR and XRR, not needed,
however, to calculate the density of the considered atom, for
which only the (lmax + 1)2 first columns and rows of XCC are
required. Note that for each atom the region C was constructed
such that the considered atom was situated in the centre of C.

The proposed spatial truncation of the inverse X = M−1

of the TB-KKR matrix consists in the neglect of XRC on both
sides of (18). Then the equation for XCC simplifies to

X (i+1)

CC = �tC + �tCGr
CC X (i)

CC (19)

4
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with fixed dimensions (lmax +1)2 Ntr determined by the number
Ntr of atoms in the truncation region C. Compared with (16)
the effort to solve (19) is reduced by a factor Ntr/N . The
total effort for all N atoms is then proportional to Nit Ncl Ntr N .
This increases linearly with N provided that Nit approaches a
constant value for large N . This condition is satisfied, as will
be shown in the next section.

4. Results

To investigate the behaviour of the proposed algorithm, in
particular how the total energy Etot converges with the number
Nit of iterations and how it is affected by the number Ntr of
atoms in the truncation region, large Cu and Pd supercells were
considered as model systems. The accuracy of Etot depends
of course also on other numerical parameters, for instance the
angular-momentum cut-off lmax, the number Ncl of repulsive
potentials used to calculate the TB-KKR structure constants
and the number of sampling points in the Brillouin zone. The
results presented below were obtained with the minimal choice
lmax = 2, Ncl = 13 and a single point k = (1/4, 1/4, 1/4) ×
2π/a in the irreducible part of the Brillouin zone, where a
is the lattice constant of the supercell. This choice, which
permitted very large truncation regions, was justified since tests
done with lmax = 3, Ncl = 55 and several k point meshes
showed rather similar dependences of Etot on Nit and Ntr.

The supercells were constructed by repeating a simple
cubic unit cell with four atoms, arranged in the appropriate
face-centred-cubic geometry, 16, 32 or 48 times in all three
space directions. The calculation of the self-consistent
potential for the supercells was accomplished by the concept
of equivalent k point meshes. As discussed by Chetty et al
[31], the simple cubic cell with four atoms leads to identical
density and total energy results if equivalent k points are used
in the Brillouin zones of this cell and the supercell with many
atoms. Thus the self-consistent potential for the supercells
could be calculated by use of 816, 5984 and 19600 points
in the irreducible part of the Brillouin zone of the simple
cubic unit cell. This feature together with the fact that all
atoms are equivalent in the model systems represented an
enormous simplification for the current investigation. Contrary
to realistic systems, where (16) or (19) and the density
integral (14) must be calculated for all atoms, here only one
atom had to treated so that all the results presented below could
be obtained with a desktop computer even for the very large
supercells considered.

We first studied how the total energy depends on the
tolerance criterion used to stop the QMR iterations and how
many QMR iterations are needed. For this study a 16×16×16
supercell with N = 16 384 atoms was used, the temperature
was chosen as T = 800 K, which corresponds to an imaginary
part πkT = 0.217 eV of the first Matsubara energy, and the
criterion for the relative residual norm ||r || was varied between
10−3 and 10−8. Table 1 contains the results for the total energy
error �Etot and the number Nit of iterations needed at the
first Matsubara energy where Nit has its largest value. The
table shows that �Etot decreases rapidly with the specified
tolerance threshold and that approximately a constant number

Table 1. Total energy error �Etot achieved (in meV per atom) and
number of iterations Nit needed at the first Matsubara energy
EF + iπkT if the QMR iterations are stopped at a relative residual
norm ||r ||. Here Nit is obtained by averaging over the nine
independently iterated L components.

Cu Pd

||r || �Etot Nit �Etot Nit

10−3 5.3740 403 2.3790 234
10−4 0.3456 528 0.4179 315
10−5 0.0055 670 0.0167 397
10−6 0.0003 814 0.0015 463
10−7 0.0000 946 0.0001 540
10−8 0.0000 1047 0.0000 610

of iterations is needed to reduce ||r || and �Etot by an order of
magnitude. The faster convergence for Pd is probably caused
by the hybridization between s and d states near EF, which
leads to a smaller contribution of longer ranged s states in Pd
than in Cu.

We then studied how Nit depends on system size. This
is an important question because the computing time is
proportional to Nit and thus too large values of Nit disfavour
iterative solutions compared with direct solutions. Smirnov
and Johnson [18], who use supercells containing up to 2048
atoms, found that the computing time per atomic site scales
as N1+ε , which indicates that Nit increases as N ε , where
ε depends on the position of the energy mesh point in the
complex plane. For the much larger systems investigated here
a different behaviour of Nit was found. Nit does not increase
according to a power law, but approaches a constant value for
large system size. This is illustrated in figure 1, where values
for Nit necessary at the first Matsubara energy are shown as
a function of the number Ntr of atoms in truncation regions
that were constructed by using more and more neighbour shells
of atoms around the central site with the idea that always
one more shell in the close-packed (110) direction should be
included. The curves shown in figure 1 were obtained by fitting
the calculated values of Nit to the function

Nit = N∞
it α exp(−γ N1/3

tr ) (20)

with three temperature dependent parameters Nit, α and γ . The
results for the fit parameters are given in table 2. Figure 1
shows that the dependence of Nit on Ntr is rather well described
by the exponential behaviour (20) with a constant limit N∞

it for
Ntr → ∞. This means that for large systems Nit practically
does not increase with system size and that the computational
effort, which is proportional to Nit Ncl Ntr N , shows true linear
scaling because only the factor N increases with system size.

The most important question in the current investigation
was how the spatial truncation of the Green function, which
generates the linear-scaling behaviour, affects the accuracy
of the total energy. Contrary to figure 1, where only the
first Matsubara energy point was considered, total energy
calculations require us to use all mesh points in the complex
energy plane. To save computing time the total energies were
not calculated for the 48 × 48 × 48 supercell used in figure 1,
but for the smaller 32 × 32 × 32 supercell with 131 072 atoms.
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Figure 1. Number Nit of QMR iterations as a function of the number
Ntr of atoms contained in the truncation region in a 48 × 48 × 48 Pd
supercell. Solid and open squares are for T = 800 and 1600 K, the
diamonds for T = 400 K. The lines are fitted as described in the text.

Table 2. Parameters determined by fitting the number of iterations
required to obtain a relative residual norm ||r || < 10−6 at the
Matsubara energy EF + iπkT to a function of the form (20).

Cu Pd

T (K) N∞
it α γ N∞

it α γ

400 2318 2469 −0.0173 999 1101 −0.0303
800 503 646 −0.0688 368 430 −0.0575

1600 220 314 −0.1095 173 207 −0.0808

The tolerance criterion for the QMR relative residual norm
was specified as ||r || = 10−6 which, according to table 1,
gives well converged total energies. The effect of truncation
on the total energy accuracy is shown in figure 2, where the
error �Etot is plotted as a function of the number Ntr of
atoms in the truncation region for Ntr values between 767 and
34 521 for Cu and between 1289 and 34 521 for Pd. Results

of �Etot for smaller values of Ntr did not exhibit a similar
clear trend to the one displayed in figure 2. For Ntr = 55 the
calculated total energy error was approximately 70 meV for
Cu and Pd. For Ntr = 177 it was approximately 5 meV for Cu
and 20 meV for Pd and for Ntr = 381 approximately 5 meV
for both metals. Figure 2 illustrates that the proposed linear-
scaling algorithm can be used for total energy calculations in
large metallic systems and that the total energy error can be
reduced below 2 meV if truncation regions with a few thousand
atoms are used. Figure 2 also shows that higher electronic
temperature does not reduce the truncation error substantially
except for rather large truncation regions. This is probably
a consequence of the fact that the algebraic decay of the
Green function (and density matrix) dominates the additional
exponential decay caused by temperature up to truncation
regions with approximately 20 000 atoms which corresponds
to a truncation distance of approximately ten times the face-
centred-cubic lattice constant.

It should be mentioned here that for the investigation
of the truncation effect it was not necessary to calculate the
total energies self-consistently because the modified energy
functional [32]

Ẽ[n(r)] = E[n(r)] − EF

(∫
n(r) − Nel

)
(21)

was used instead of the standard energy functional E[n(r)].
The functional (21) is extremal for density variations, even if
they do not conserve the total number of electrons Nel, and
has been demonstrated to yield accurate results in impurity
calculations [32], where charge neutrality is reached only
within 0.1 to 0.01 electrons in embedding regions consisting
of one to four shells of neighbouring atoms.

5. Discussion

The results presented above indicate that the proposed
algorithm based on the sparsity of the TB-KKR matrix is
suitable for large metallic systems. For applications it is
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Figure 2. Total energy error per atom as a function of the number of atoms contained in the truncation region. Solid and open squares are for
T = 800 and 1600 K, diamonds for T = 400 K. The lines, which connect the results for T = 800 K, serve as a guide for the eye. Note that
different energy scales are used for Cu and Pd.
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important to know whether it performs better than the direct
solution of (11) or (13). This depends on the system size which
can be estimated by

NE N3 = 3Nit Ncl Ntr N. (22)

Here NE is the number of complex energy points used for
the density (14) and the factor 3 takes into account that (16)
or (19) must be repeated approximately three times for each
QMR iteration. For iterative solutions the factor NE can be
left off because the main effort arises at the first Matsubara
energy. For typical values NE = 40, Ncl = 50 and
Nit = 300 and first considering Ntr = N , evaluation of (22)
shows that iteration is favoured for more than approximately
1000 atoms. This estimate is probably too high because
in the current investigation zero vectors were used to start
the QMR iterations instead of physically motivated ones and
because preconditioning applied to (16) and (19) can reduce Nit

although the preconditioners tested so far [18] were not really
successful. It can also be expected that an iterative solution
would have a better parallel performance because of the less
demanding communication requirements. The truncation of
the Green function always reduces the computational effort
provided that the choice Ntr < N leads to total energy errors
which can be tolerated.

The behaviour of the algorithm was illustrated for large
Cu and Pd supercells chosen as a model system where only
one atom had to be considered in the iterative solution. Thus
a desktop computer with 2 Gbyte of memory was sufficient
to treat even 48 × 48 × 48 supercells with truncation regions
containing up to 54 953 atoms. For realistic systems, however,
the computing time increases with the number of inequivalent
atoms and massively parallel computing is unavoidable. A high
parallel efficiency can be expected because communication
among the processors only arises for the exchange of TB-KKR
structure constants and t matrices and for the determination
of the Hartree potential, Fermi level and possible parameters
used in advanced self-consistency mixing schemes. In order to
study these issues in a realistic system, work is in progress to
reorganize the currently used KKR computer code.

Very likely, other physical properties than the total
energy can also be calculated. Since calculation of
forces in the KKR method is straightforward [33] and
calculated atomic displacements are found in good agreement
with extended x-ray absorption fine structure (EXAFS)
measurements [33] and ab initio pseudopotential molecular
dynamics calculations [34], it would be interesting to see how
spatial truncation of the Green function affects forces and
displacements. The algorithm is also not restricted to occupied
states and metallic systems. Since the exponential decay of
the TB-KKR structure constants occurs up to approximately
10 to 20 eV above EF, unoccupied states can be treated in
this energy range. In semiconductors and insulators, however,
in particular with the intention of utilizing the naturally faster
spatial decay of the density matrix, an old problem of the KKR
Green function method must be solved. The problem is that EF

is not found in the gap between valence and conduction states
if the usual angular-momentum cut-off is applied to calculate
the Green function (6). To circumvent the problem, recently a

procedure based on Lloyd’s formula has been suggested [35],
but it is not yet clear how Lloyd’s formula can be used together
with the spatial truncation. Finally, it should be pointed
out that the proposed algorithm can be used not only for
the Schrödinger equation, but very likely also for the Dirac
equation because the extension of the TB-KKR method to fully
relativistic calculations is quite straightforward [36].

6. Summary

An algorithm based on the TB-KKR Green function method
was presented which is useful to solve the Schrödinger
equation in the energy range relevant for density-functional
calculations for large metallic systems with linear-scaling
computational effort. It was shown how linear scaling is
obtained by combined use of sparsity of the TB-KKR matrix,
iterative solution of the KKR matrix equations and a spatial
truncation of the Green function which corresponds to the
use of a restricted density matrix range in other linear-
scaling methods. For the iterations the quasi-minimal residual
(QMR) method in its transpose free form was applied and no
convergence problems were found. The algorithm was tested
for large Cu and Pd supercells chosen as model systems and
it was shown that total energy errors smaller than 2 meV
could be obtained if the truncation region contained a few
thousand atoms which corresponds to a truncation distance of
approximately five times the elemental lattice constant of Cu
and Pd. It was demonstrated that finite electronic temperature
considerably reduces the required number of iterations whereas
it improves the accuracy of total energies appreciably only
for rather large truncation regions. It was explained that the
iterations treat each atomic site independently of all other sites,
which makes the algorithm particularly suitable for massively
parallel computing.
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